Meteora
  • Meteora: The most dynamic and sustainable liquidity layer on Solana
  • PRODUCT OVERVIEW
    • Meteora Liquidity Pools
      • DLMM Overview
        • What is DLMM?
        • DLMM Program
        • Dynamic Fees
        • Strategies & Use Cases
        • DLMM Farming Rewards
      • DLMM Launch Pool Overview
      • Dynamic AMM Overview
        • What is a Dynamic AMM Pool?
        • Dynamic AMM LP Fee and APY Calculation
        • Creating a Dynamic AMM Pool via the UI
        • Claiming Fees from Permanently Locked Liquidity
        • Dynamic AMM Stable Pools
        • Dynamic LST Pools
        • Additional yield from Dynamic Vaults
        • Dynamic AMM Farm Overview
      • DAMM v2 Overview
      • Memecoin Pool Overview
        • Memecoin Pool v2
          • What is Memecoin Pool v2?
        • Memecoin Pool v1
          • What is Memecoin Pool v1?
          • Permanently Locking Liquidity
      • Stake2Earn Pool Overview
        • What is a Stake2Earn Pool?
        • Stake2Earn for Launchpads
      • Multi-Token Stable Pool Overview
    • Alpha Vault Overview
    • Dynamic Vault Overview
      • What is a Dynamic Vault?
      • Dynamic Vault Program
      • Hermes - Meteora's Keeper
        • Algorithm to find optimal yield allocations
        • Rebalance crank
        • Operation fee calculation
      • Design Goals
      • Security
      • Dynamic Vaults Whitepaper
      • Dynamic Vaults Community Explainers
      • Affiliate Program for Dynamic Vault
        • Become an Affiliate Partner (Dynamic Vaults)
    • Dynamic Bonding Curve (DBC) Overview
      • What is the Dynamic Bonding Curve?
      • Customizable Pool Configuration
      • Bonding Curve Formula
      • DBC Migrator Keeper
    • Meteora’s Anti-Sniper Suite
  • INTEGRATION
    • DLMM Integration
      • DLMM SDK
        • DLMM TypeScript SDK
        • CPI Examples
      • DLMM API
      • Fetching information on locked liquidity in a DLMM
    • Dynamic AMM Pool Integration
      • Dynamic AMM SDK
        • Dynamic AMM TypeScript SDK
        • CPI Examples
      • Dynamic AMM API
        • Pool Info
        • Pool State
      • Setting Pool and Fee Config for Dynamic AMM Pools
      • Create Dynamic Pool with Timestamp/Slot Activation
      • Dynamic AMM - Farm Integration
    • DAMM v2 Integration
      • DAMM v2 SDK
        • DAMM v2 TypeScript SDK
        • DAMM v2 Rust SDK
      • Setting Pool and Fee Config for DAMM v2
      • Technical FAQ
    • Memecoin Pool Integration
      • Memecoin Pool v2 Integration
        • Setting Pool and Fee Config for Memecoin Pool v2
      • Memecoin Pool v1 Integration
        • TypeScript Code Examples
        • CPI Examples
        • Setting Pool and Fee Config for Memecoin Pool v1
        • Track permanently-locked liquidity in Memecoin Pool v1
        • Track Protocol Fee from swaps in Memecoin Pool v1
    • Stake2Earn Pool Integration
    • Dynamic Vault Integration
      • Using TypeScript-Client
      • Using Rust-Client
      • Using CPI
      • Vault API
        • Vault Info
        • Vault State
      • Vault Developer Resources
    • Alpha Vault Integration
      • Alpha Vault TypeScript SDK
      • Alpha Vault without Whitelist Setup
      • Alpha Vault with Whitelist Setup
    • Dynamic Bonding Curve (DBC) Integration
      • DBC SDK
        • DBC TypeScript SDK
        • DBC Rust SDK
      • DBC Fee Scheduler Formula
      • Program Repo
      • Technical FAQ
  • TOKEN LAUNCH POOLS
    • Steps to Create a Pool for a Token Launch
      • Create: DLMM Launch Pool
      • Create: Dynamic AMM Pool
      • Create: Memecoin Pool v1
      • Create: Stake2Earn Pool
      • Create: Pools with Alpha Vault
        • Create: DLMM Launch Pool with Alpha Vault
        • Create: Dynamic AMM Pool with Alpha Vault
        • Create: Memecoin Pool with Alpha Vault
        • Create: Stake2Earn Pool with Alpha Vault
    • Anti-Sniper Fee Suite for a Token Launch
  • Resources
    • Audits
    • Meteora Program IDs
    • Meteora APIs
    • Devnet Testing
    • Community Data Dashboards & Tools
    • Meteora Brand Assets
    • THE MASSIVE METEORA STIMULUS PACKAGE
      • Overview
      • 1. Dynamic Liquidity Market Maker (DLMM)
      • 2. Formation Of An LP Army DAO
      • 3. The 10% Stimulus Proposal
  • USER FAQ
    • Getting Started LPing
      • Supported Wallets
      • Prepare SOL
      • SOL required for Rent
      • What is Wrapped SOL?
      • What is an AMM?
      • What does it mean to provide liquidity?
      • How to swap to the tokens required for adding liquidity to a pool
      • How to quickly check if a token has any risks
      • Viewing your transaction history
      • My wallet has been compromised. What should I do?
    • Differences between DLMM and Dynamic Pools
    • DLMM FAQ
    • Dynamic AMM FAQ
      • How is the pool price of the token calculated in a Dynamic AMM?
      • What is a Meteora LP token?
      • How do I see fees earned on a Dynamic AMM Pool?
      • How to track your earnings for a Dynamic Pool?
      • What is Virtual Price in a Dynamic Pool?
      • How do LP tokens, fees, and virtual price work for Dynamic Pools?
      • Why must I add liquidity in non-stable Dynamic Pools using a 50:50 value ratio?
      • What is AMP in a Dynamic Pool with stable coins?
      • Why is the USDT-USDC pool not 1:1 in ratio of assets?
      • Can I create an LST, FX, or Multi-token pool using the Dynamic Pool creation tool?
    • Alpha Vault FAQ
    • Why is the token sometimes not picked up and tradable on Jupiter?
    • How do I create a new farm?
    • Video Tutorials to Get Started
      • LP Army Boot Camp
      • DLMM Strategy Sessions / Jam Sessions
  • Security and Risks
    • Risk of Impermanent Loss (IL)
    • Risk of depositing into an imbalanced pool / pool with price out of sync
    • Smart contract risk
    • Risk of a stablecoin depeg
    • Operational risk for dynamic vaults and pools
    • Lending risk for dynamic vaults and pools
  • legal
    • Terms of Service
    • Stake2Earn Terms of Service
Powered by GitBook
On this page
  1. Security and Risks

Operational risk for dynamic vaults and pools

PreviousRisk of a stablecoin depegNextLending risk for dynamic vaults and pools

Last updated 1 year ago

Operation risks are risks related to source code such as when a partner protocol or team has a program update, or when lending platforms are not well audited. In minor cases, the source code changes break the integration, users are unable to perform any vault withdrawals or deposits. In major cases, the vault program or lending protocols may be exploited, losing the tokens in the vaults.

We implement a maximum allocation mechanism that the vault can deposit into each lending pool to mitigate this risk.

All lending protocols' maximum allocation starts at 100%. We will assess them across a set of criteria which includes the existence of audits, open-source code, insurance funds, main token pools, program multi-sig / verified & non-updatable status as well as the length of integration with Meteora. This set of criteria will eventually be governed by the DAO.

For every criterion not met, we will reduce the maximum allocation allowed to the protocol according to this matrix:

Criteria
Maximum allocation reduction, if not present

Audit

20

Open-source

30

Official Insurance Funds?

20

Main Pool

10

Existing integration > 1 month

10

Program multi-sig / or Verified & Non-Updatable

20

Example: Lending Protocol Xyz (with Audited, Open-sourced, Main Pool, and Program multi-sig)

The score for allocation will be 100-20 (No official insurance funds) - 10 (Existing integration < 1 month) = 70

We also limit max allocation in each lending as 30% of total liquidity.

Hermes is not allowed to withdraw funds from the lending protocols to external wallets. In the event that Hermes is hacked, the hackers will only be able to control the flow of funds to and from between the vaults and lending protocols; the principals are still safe in either of them.

You can read about our security measures for dynamic vaults here:

https://docs.meteora.ag/liquidity-primitives/dynamic-vaults/security