Meteora
  • Meteora: The most dynamic and sustainable liquidity layer on Solana
  • PRODUCT OVERVIEW
    • Meteora Liquidity Pools
      • DLMM Overview
        • What is DLMM?
        • DLMM Program
        • Dynamic Fees
        • Strategies & Use Cases
        • DLMM Farming Rewards
      • DLMM Launch Pool Overview
      • Dynamic AMM Overview
        • What is a Dynamic AMM Pool?
        • Dynamic AMM LP Fee and APY Calculation
        • Creating a Dynamic AMM Pool via the UI
        • Claiming Fees from Permanently Locked Liquidity
        • Dynamic AMM Stable Pools
        • Dynamic LST Pools
        • Additional yield from Dynamic Vaults
        • Dynamic AMM Farm Overview
      • DAMM v2 Overview
      • Memecoin Pool Overview
        • Memecoin Pool v2
          • What is Memecoin Pool v2?
        • Memecoin Pool v1
          • What is Memecoin Pool v1?
          • Permanently Locking Liquidity
      • Stake2Earn Pool Overview
        • What is a Stake2Earn Pool?
        • Stake2Earn for Launchpads
      • Multi-Token Stable Pool Overview
    • Alpha Vault Overview
    • Dynamic Vault Overview
      • What is a Dynamic Vault?
      • Dynamic Vault Program
      • Hermes - Meteora's Keeper
        • Algorithm to find optimal yield allocations
        • Rebalance crank
        • Operation fee calculation
      • Design Goals
      • Security
      • Dynamic Vaults Whitepaper
      • Dynamic Vaults Community Explainers
      • Affiliate Program for Dynamic Vault
        • Become an Affiliate Partner (Dynamic Vaults)
    • Dynamic Bonding Curve (DBC) Overview
      • What is the Dynamic Bonding Curve?
      • Customizable Pool Configuration
      • Bonding Curve Formula
      • DBC Migrator Keeper
    • Meteora’s Anti-Sniper Suite
  • INTEGRATION
    • DLMM Integration
      • DLMM SDK
        • DLMM TypeScript SDK
        • CPI Examples
      • DLMM API
      • Fetching information on locked liquidity in a DLMM
    • Dynamic AMM Pool Integration
      • Dynamic AMM SDK
        • Dynamic AMM TypeScript SDK
        • CPI Examples
      • Dynamic AMM API
        • Pool Info
        • Pool State
      • Setting Pool and Fee Config for Dynamic AMM Pools
      • Create Dynamic Pool with Timestamp/Slot Activation
      • Dynamic AMM - Farm Integration
    • DAMM v2 Integration
      • DAMM v2 SDK
        • DAMM v2 TypeScript SDK
        • DAMM v2 Rust SDK
      • Setting Pool and Fee Config for DAMM v2
      • Technical FAQ
    • Memecoin Pool Integration
      • Memecoin Pool v2 Integration
        • Setting Pool and Fee Config for Memecoin Pool v2
      • Memecoin Pool v1 Integration
        • TypeScript Code Examples
        • CPI Examples
        • Setting Pool and Fee Config for Memecoin Pool v1
        • Track permanently-locked liquidity in Memecoin Pool v1
        • Track Protocol Fee from swaps in Memecoin Pool v1
    • Stake2Earn Pool Integration
    • Dynamic Vault Integration
      • Using TypeScript-Client
      • Using Rust-Client
      • Using CPI
      • Vault API
        • Vault Info
        • Vault State
      • Vault Developer Resources
    • Alpha Vault Integration
      • Alpha Vault TypeScript SDK
      • Alpha Vault without Whitelist Setup
      • Alpha Vault with Whitelist Setup
    • Dynamic Bonding Curve (DBC) Integration
      • DBC SDK
        • DBC TypeScript SDK
        • DBC Rust SDK
      • DBC Fee Scheduler Formula
      • Program Repo
      • Technical FAQ
  • TOKEN LAUNCH POOLS
    • Steps to Create a Pool for a Token Launch
      • Create: DLMM Launch Pool
      • Create: Dynamic AMM Pool
      • Create: Memecoin Pool v1
      • Create: Stake2Earn Pool
      • Create: Pools with Alpha Vault
        • Create: DLMM Launch Pool with Alpha Vault
        • Create: Dynamic AMM Pool with Alpha Vault
        • Create: Memecoin Pool with Alpha Vault
        • Create: Stake2Earn Pool with Alpha Vault
    • Anti-Sniper Fee Suite for a Token Launch
  • Resources
    • Audits
    • Meteora Program IDs
    • Meteora APIs
    • Devnet Testing
    • Community Data Dashboards & Tools
    • Meteora Brand Assets
    • THE MASSIVE METEORA STIMULUS PACKAGE
      • Overview
      • 1. Dynamic Liquidity Market Maker (DLMM)
      • 2. Formation Of An LP Army DAO
      • 3. The 10% Stimulus Proposal
  • USER FAQ
    • Getting Started LPing
      • Supported Wallets
      • Prepare SOL
      • SOL required for Rent
      • What is Wrapped SOL?
      • What is an AMM?
      • What does it mean to provide liquidity?
      • How to swap to the tokens required for adding liquidity to a pool
      • How to quickly check if a token has any risks
      • Viewing your transaction history
      • My wallet has been compromised. What should I do?
    • Differences between DLMM and Dynamic Pools
    • DLMM FAQ
    • Dynamic AMM FAQ
      • How is the pool price of the token calculated in a Dynamic AMM?
      • What is a Meteora LP token?
      • How do I see fees earned on a Dynamic AMM Pool?
      • How to track your earnings for a Dynamic Pool?
      • What is Virtual Price in a Dynamic Pool?
      • How do LP tokens, fees, and virtual price work for Dynamic Pools?
      • Why must I add liquidity in non-stable Dynamic Pools using a 50:50 value ratio?
      • What is AMP in a Dynamic Pool with stable coins?
      • Why is the USDT-USDC pool not 1:1 in ratio of assets?
      • Can I create an LST, FX, or Multi-token pool using the Dynamic Pool creation tool?
    • Alpha Vault FAQ
    • Why is the token sometimes not picked up and tradable on Jupiter?
    • How do I create a new farm?
    • Video Tutorials to Get Started
      • LP Army Boot Camp
      • DLMM Strategy Sessions / Jam Sessions
  • Security and Risks
    • Risk of Impermanent Loss (IL)
    • Risk of depositing into an imbalanced pool / pool with price out of sync
    • Smart contract risk
    • Risk of a stablecoin depeg
    • Operational risk for dynamic vaults and pools
    • Lending risk for dynamic vaults and pools
  • legal
    • Terms of Service
    • Stake2Earn Terms of Service
Powered by GitBook
On this page
  1. Security and Risks

Risk of Impermanent Loss (IL)

PreviousDLMM Strategy Sessions / Jam SessionsNextRisk of depositing into an imbalanced pool / pool with price out of sync

Last updated 1 year ago

Impermanent loss, also called divergence loss, is the most common liquidity provider risk associated with traditional (constant product) liquidity pools. It occurs when the relative price of the tokens in the pool changes and the value of the LP’s initial token deposit in the pool becomes less compared to holding the tokens separately without depositing them in a pool. LPs must learn to manage IL.

Consider a scenario where you LP into an A/B pool and the value of token A increases against token B; you will end up with more of token B and less of A. If the combined value of your eventual A and B token amounts in the pool is now less than if you had simply held the original tokens (without providing liquidity), you’d have suffered IL. This loss is “impermanent” because it is only fully realized when you withdraw your liquidity. Since IL increases as price diverges, it is exacerbated by higher market volatility.

Below are two simple examples.

Example 1:

You deposit $100 of BONK and $100 of SOL into a traditional constant product liquidity pool. The price of BONK does a 1.5x, reaching 150% of its original value while the price of SOL remains the same.

If you had not deposited in the pool, you would now have $150 of BONK and $100 of SOL for $250 total.

Since you deposited in the pool, if the total combined value is now $245, the $5 difference from $250 represents your impermanent loss.

Example 2:

You deposit $100 of BONK and $100 of SOL. The price of BONK does a 4x to 400% its original value while the price of SOL remains the same.

If you had not deposited in the pool, you would now have $400 of BONK and $100 of SOL, totaling $500.

Since you deposited in the pool, you would instead have $200 of BONK and $200 of SOL, totaling $400, for a $100 impermanent loss. The greater the divergence in price between the two assets, the greater the impermanent loss. If the relative prices return to the original ratio, the loss will be recovered, which is why it is called impermanent. However, it is permanent if the price ratio does not recover.

Note that these examples do not include any fees taken by the pool during that period, or any yield from a farm, lending protocol or other source. If income from those other sources outweighs impermanent loss, it is still a net gain overall.

How do I calculate my impermanent loss on DLMM?

There is a precise formula to calculate the impermanent loss for a given start and end point based on the relative price changes between the assets in the pool.

We created a as a helpful tool to manage your IL on the DLMM. It is currently set up for checking a position with 69 bins and an equal distribution of liquidity across the bins. Your actual liquidity distribution may be very different and would change the IL calculation here. Additionally, your 24hr fee / TVL for your position may also be different.

simple google sheet