Meteora
  • Meteora: The most dynamic and sustainable liquidity layer on Solana
  • PRODUCT OVERVIEW
    • Meteora Liquidity Pools
      • DLMM Overview
        • What is DLMM?
        • DLMM Program
        • Dynamic Fees
        • Strategies & Use Cases
        • DLMM Farming Rewards
      • DLMM Launch Pool Overview
      • Dynamic AMM Overview
        • What is a Dynamic AMM Pool?
        • Dynamic AMM LP Fee and APY Calculation
        • Creating a Dynamic AMM Pool via the UI
        • Claiming Fees from Permanently Locked Liquidity
        • Dynamic AMM Stable Pools
        • Dynamic LST Pools
        • Additional yield from Dynamic Vaults
        • Dynamic AMM Farm Overview
      • DAMM v2 Overview
      • Memecoin Pool Overview
        • Memecoin Pool v2
          • What is Memecoin Pool v2?
        • Memecoin Pool v1
          • What is Memecoin Pool v1?
          • Permanently Locking Liquidity
      • Stake2Earn Pool Overview
        • What is a Stake2Earn Pool?
        • Stake2Earn for Launchpads
      • Multi-Token Stable Pool Overview
    • Alpha Vault Overview
    • Dynamic Vault Overview
      • What is a Dynamic Vault?
      • Dynamic Vault Program
      • Hermes - Meteora's Keeper
        • Algorithm to find optimal yield allocations
        • Rebalance crank
        • Operation fee calculation
      • Design Goals
      • Security
      • Dynamic Vaults Whitepaper
      • Dynamic Vaults Community Explainers
      • Affiliate Program for Dynamic Vault
        • Become an Affiliate Partner (Dynamic Vaults)
    • Dynamic Bonding Curve (DBC) Overview
      • What is the Dynamic Bonding Curve?
      • Customizable Pool Configuration
      • Bonding Curve Formula
      • DBC Migrator Keeper
  • Meteora's Anti-Sniper Suite (A.S.S.)
    • Meteora’s Anti-Sniper Suite
      • Dynamic Fees
      • Fee Scheduler
      • Rate Limiter
      • Alpha Vault
  • INTEGRATION
    • DLMM Integration
      • DLMM SDK
        • DLMM TypeScript SDK
        • CPI Examples
      • DLMM API
      • Fetching information on locked liquidity in a DLMM
    • Dynamic AMM Pool Integration
      • Dynamic AMM SDK
        • Dynamic AMM TypeScript SDK
        • CPI Examples
      • Dynamic AMM API
        • Pool Info
        • Pool State
      • Setting Pool and Fee Config for Dynamic AMM Pools
      • Create Dynamic Pool with Timestamp/Slot Activation
      • Dynamic AMM - Farm Integration
    • DAMM v2 Integration
      • DAMM v2 SDK
        • DAMM v2 TypeScript SDK
        • DAMM v2 Rust SDK
      • DAMM v2 API
      • Setting Pool and Fee Config for DAMM v2
      • Technical FAQ
    • Memecoin Pool Integration
      • Memecoin Pool v2 Integration
        • Setting Pool and Fee Config for Memecoin Pool v2
      • Memecoin Pool v1 Integration
        • TypeScript Code Examples
        • CPI Examples
        • Setting Pool and Fee Config for Memecoin Pool v1
        • Track permanently-locked liquidity in Memecoin Pool v1
        • Track Protocol Fee from swaps in Memecoin Pool v1
    • Stake2Earn Pool Integration
    • Dynamic Vault Integration
      • Using TypeScript-Client
      • Using Rust-Client
      • Using CPI
      • Vault API
        • Vault Info
        • Vault State
      • Vault Developer Resources
    • Alpha Vault Integration
      • Alpha Vault TypeScript SDK
      • Alpha Vault without Whitelist Setup
      • Alpha Vault with Whitelist Setup
    • Dynamic Bonding Curve (DBC) Integration
      • DBC SDK
        • DBC TypeScript SDK
        • DBC Rust SDK
      • DBC Fee Scheduler Formula
      • DBC Scripts
      • Program Repo
      • Launchpad Template
      • Technical FAQ
  • TOKEN LAUNCH POOLS
    • Steps to Create a Pool for a Token Launch
      • Create: DLMM Launch Pool
      • Create: Dynamic AMM Pool
      • Create: Memecoin Pool v1
      • Create: DAMM v2 Pool
      • Create: Stake2Earn Pool
      • Create: Pools with Alpha Vault
        • Create: DLMM Launch Pool with Alpha Vault
        • Create: Dynamic AMM Pool with Alpha Vault
        • Create: Memecoin Pool with Alpha Vault
        • Create: Stake2Earn Pool with Alpha Vault
    • Anti-Sniper Fee Suite for a Token Launch
  • Resources
    • Audits
    • Meteora Program IDs
    • Meteora APIs
    • Devnet Testing
    • Community Data Dashboards & Tools
    • Meteora Brand Assets
    • THE MASSIVE METEORA STIMULUS PACKAGE
      • Overview
      • 1. Dynamic Liquidity Market Maker (DLMM)
      • 2. Formation Of An LP Army DAO
      • 3. The 10% Stimulus Proposal
  • USER FAQ
    • Getting Started LPing
      • Supported Wallets
      • Prepare SOL
      • SOL required for Rent
      • What is Wrapped SOL?
      • What is an AMM?
      • What does it mean to provide liquidity?
      • How to swap to the tokens required for adding liquidity to a pool
      • How to quickly check if a token has any risks
      • Viewing your transaction history
      • My wallet has been compromised. What should I do?
    • Differences between DLMM and Dynamic Pools
    • DLMM FAQ
    • Dynamic AMM FAQ
      • How is the pool price of the token calculated in a Dynamic AMM?
      • What is a Meteora LP token?
      • How do I see fees earned on a Dynamic AMM Pool?
      • How to track your earnings for a Dynamic Pool?
      • What is Virtual Price in a Dynamic Pool?
      • How do LP tokens, fees, and virtual price work for Dynamic Pools?
      • Why must I add liquidity in non-stable Dynamic Pools using a 50:50 value ratio?
      • What is AMP in a Dynamic Pool with stable coins?
      • Why is the USDT-USDC pool not 1:1 in ratio of assets?
      • Can I create an LST, FX, or Multi-token pool using the Dynamic Pool creation tool?
    • Alpha Vault FAQ
    • Why is the token sometimes not picked up and tradable on Jupiter?
    • How do I create a new farm?
    • Video Tutorials to Get Started
      • LP Army Boot Camp
      • DLMM Strategy Sessions / Jam Sessions
  • Security and Risks
    • Risk of Impermanent Loss (IL)
    • Risk of depositing into an imbalanced pool / pool with price out of sync
    • Smart contract risk
    • Risk of a stablecoin depeg
    • Operational risk for dynamic vaults and pools
    • Lending risk for dynamic vaults and pools
  • legal
    • Terms of Service
    • Stake2Earn Terms of Service
Powered by GitBook
On this page
  • Basic Strategies
  • Advanced Strategies
  • What is Bin Step? Which Bin Step to use for the DLMM pool?
  1. PRODUCT OVERVIEW
  2. Meteora Liquidity Pools
  3. DLMM Overview

Strategies & Use Cases

Through allocating different amounts of tokens at diverse price points, we are able to build a desired liquidity shape (volatility strategy) with the DLMM that best fits our LP goals.

  • Spot: Provides a uniform distribution of liquidity that is flexible and suitable for any type of market and conditions. It is the most straightforward volatility strategy to deploy for new LPs who want to rebalance their position less frequently. This is similar to setting a CLMM price range.

  • Curve: Ideal for a concentrated approach that aims to maximize capital efficiency by allocating capital mostly in the middle of your price range. This is great for stables or pairs where the price does not change very often.

  • Bid-Ask: Bid-Ask is an inverse Curve distribution, where most of your capital is allocated towards both ends of the range. This strategy can be used to capture bigger volatility swings away from the current price. Bid-Ask is more complex than Spot and may require more frequent rebalancing to be effective, but has a high potential for fee capture during situations where prices fluctuate wildly around the current price. Bid-Ask can also be deployed single sided for a DCA in or out strategy.

Basic Strategies

Strategy
Advantages
Disadvantages
Considerations

Curve

Capital-efficient deployment of liquidity

Ideal for calm markets

Increased risk of impermanent loss

To achieve optimal effectiveness, it's necessary to consistently rebalance based on the current price.

Bid-Ask

Captures market volatility Great for DCA in/out of positions

Riskier than other positions

Requires rebalancing to remain efficient

Spot-Concentrated

Liquidity equally deposited between 1-3 bins

Ideal for Stablecoin pairs Maximises assets efficiency

Highest risk of Impermanent Loss when price leaves the bin range

If used in volatile pairs for capturing greatest amount of fees, make sure to monitor very closely as this strategy has highest risk of Impermanent Loss.

Spot-Spread Liquidity equally deposited between 20-30 bins

Very capital-efficient strategy Expect to stay in range for small intra-day volatility

High risk of Impermanent loss

Make sure to monitor position at least on a daily basis.

Spot-Wide Liquidity equally deposited between 50 bins

Lower risk of impermanent loss Ideal for LPs who do not wish to regularly monitor price action

Reduced capital efficiency since capital is spread over a larger range.

Although capital-efficiency is lower than the other shapes above, in general, it is still better than x*y=k exchanges

Advanced Strategies

  • Ranged Limit Orders

  • DCA while earning

  • Sell/Buy Walls

  • Gradual Ladder Orders

  • De-peg Bets

What is Bin Step? Which Bin Step to use for the DLMM pool?

Each bin represents a single price point, and the difference between 2 consecutive bins is the bin step. Bin steps are calculated based on the basis points set by the pool creator. Bin step is similar to tick size and a higher size means a larger jump from one price to the next.

For example, if the current price for SOL/USDC is $20 per SOL and the bin step is 25 basis points (0.25%), then the consecutive bins would be 20 x 1.0025 = 20.05, 20.05 * 1.0025 = 20.10 and so on.

Smaller bin step: Allows you to capture more volume, but, your max price range per position is smaller. So a general rule of thumb is smaller steps for stable pairs and larger steps for more volatile pairs.

Larger bin step: Allows you to set a wider price range per position, but at the cost of less volume, since there's a less continuous price range (harder for liquidity to be picked up for swaps). But important for highly volatile pairs where price swings can be huge. For highly volatile pairs, larger bin steps could also mean less errors, since with smaller bin steps a trade may jump between different binArrays frequently. Note: Currently the max # of bins per position is 69, so a larger bin step can be used if you need to widen your range for a single position.

PreviousDynamic FeesNextDLMM Farming Rewards

Last updated 20 days ago

Base Fee: The minimum fee charged per swap. Lower fee gets more volume but higher fee earns more per volume. Generally if you want a higher base fee, the higher the bin step. But a lower base fee than other DEXes might give more flexibility for dynamic fees to optimize for volume or fees given the market volatility. For more details on dynamic fees, please refer to .

this section